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gallium arsenide substrate. However, a circuit using primarily duroid

(e, = 2.2) as a substrate may use the first low-coupling height ratio

with a very thin upper substrate of high dielectric constant inserted

above a lower duroid substrate.

Consideration must also be made concerning whether such a mode

equalizing structure is physically realizable. Referring to Fig. 2(b),

the low-coupling height ratios shown exactly equalize the even- and

odd-modes at a given frequency which may not be physically realiz-

able in many circuit designs. However, choosing height combinations

as close as possible to these ideal low-coupling height ratios will tend

to minimize the overall effects of pulse distortion and coupling in

edge-coupled CPW’s.

V. CONCLUSION

A full-wave analysis was used to calculate the effective dielectric

constants for even- and odd-modes of edge-coupled, CPW for-

ward directional couplers in multilayer substrate structures using

a conductor-backed ground plane. It was found that the phase

velocities of both even- and odd-modes can be equalized for specific

multilayer substrate height combinations over a wide range of slot

geometries, suggesting that a single multilayer substrate configuration

may be used to control pulse distortion and coupling for wide-

band signals. When the lower substrate dielectric constant is much

less than the upper substrate dielectric constant, it was found that

these low-coupling height combinations can lead to circuit designs

using combinations of thick and very thin substrates, Dispersion and

coupling of a 10ps Gaussian pulse were presented for uncompensated

and compensated configurations. It was shown that a multilayer

structure using substrate height combinations that equalize both even-

and odd-mode phase velocities can significantly reduce coupling and

distortion effects. Design guidelines applicable toward practical MIC

and MMIC structures were also presented.
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Computation of Excess Capacitances of Various Strip

Discontinuities Using Closed-Form Green’s Functions

Kyung S. Oh, Jose E, Schutt-Aine, and Raj Mittra

Abstract-An efficient quasi-static method to compute excess (equiv-
alent) capacitances of various strip discontismities in a multilayered
dielectric medium is presented. The excess charge distribution on the
surface of a conductor is obtained by solving an integral equation

in conjunction with closed-form Green’s functions. A complete fist of

expressions of the closed-form Green’s fnn{ctions for a point charge, a
fine charge, and a semi.infinite line charge is presented. An open end,
a bend, a step junction, and aT junction are considered as nrrmerical
examples.

I. INTRODUCTION

Quasi-static analysis is often performed to characterize strip dis-

continuities when the dimensions of the discontinuities are much

smaller than the wavelength. Under the quasi-static analysis, the

dominant effect of strip discontinuities is fringing fields due to the

physical irregularities of discontinuity geometries. The modeling of

these fringing fields in terms of an excess capacitance is discussed

in this paper.

Numerous papers have been published to compute excess capaci-

tances of vaxious rnicrostrip discontinuities, and a summary of popular

methods can be found in [1]. The most successful approach is one

based on the formulation of an integral equation in terms of the

excess charge distribution, which was tirst proposed by Silvester

and Benedek [2] and has been applied to analyze various microstrip

discontinuities [2]–[5]. The Green’s function for a layered medium

is employed in this approach. For N dielectric layers, the expression

for this Green’s function would consist of an N – 1 nested infinite

series [6]; hence, in practice, this form of the Green’s function may
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not be applied to a multilayered medium. Recently, Sarkar et al. [7]

solved discontinuity problems for a multilayered medium using the

free-space Green’s function, but additional unknown charges (over

unknown charges on the surface of a conductor) had to be placed

on the dielectric interfaces and the top ground plane to model the

polarization charge and the free charge. Although such inclusion of

unknowns may be tolerable for two-dimensional (2-D) problems,

it is computationally too burdensome for three-dimensional (3-D)

problems.

In this paper, the closed-form Green’s function discussed in [8]

is employed to formulate an integral equation in terms of the excess

charge distribution. A complete list of expressions of the closed-form

Green’s functions for a point charge, a line charge, and a semi-infinite

line charge with or without a top ground plane is presented in this

paper. The presented method requires neither additional unknowns to

model dielectric interfaces and the top ground plane nor evaluations

of any infinite series except for cases where the top ground plane is

present. When the top ground plane is present, using the closed-form

Green’s function is still numerically advantageous since the nested

infinite series in the expression of the usual Green’s function becomes

a simple infinite series without nesting.

II. CLOSED-FORM GREEN’S FUNCTIONS

Closed-form expressions of the electrostatic Green’s functions for

a point charge, a line charge, and a semi-infinite line charge are

derived in this section based on the approach used in [8]. Consider

N dielectric layers which are backed by a ground plane as depicted

in Fig. 1. The Nth layer is either a half-space or terminated by an

optional top ground plane. All dielectric layers and ground planes are

assumed to be planar and infinite in the z z-plane. The electrostatic

Green’s function in the spectral domain is described by the following

closed-form formula [8]:

G(y, gl?h)

= &(l{~(~, rn, n)e
,(,+vo-z~.) + K;(y, m,n)

m
. ~-7(9 -w, +2(4,-1-&)) + @(7,m,n)e+y+w)

+ A_~(-y, nt, n)e -/–v–v. +Z&-1)) y>ya (la)

G(-f, ylro)

– &(l<-~(-f, rn, rz)e
~(u+v~–zdm) + K2-(T, m, n)—

e~(y–yo) + 1f”3–(~, rn, n)e7(-U+ti”+2(dn–’ -din))

+ 1(4–(~, m,n)e7(-Y-V’’+zdw-’)) y < y. (lb)

where G is the spectral-domain Green’s function, and r- and r o are

the observation and source points located in the rtth and mth layers,

respectively. The superscripts + and – are used to denote the cases

for y ~ y“ and y < YO. The expressions for the four coefficient

functions 1{,* can be found in [8]. A closed-form expression of the

Green’s function in the space domain is obtained by approximating

these four coefficient functions 1<,+ using exponential functions. It

is important to mention that although R“,* is dependent on m and

n, it is not a function of y and YO; hence, the approximation can

Optional Top Ground Plane

y=d~d

y=dN& [

y=d2
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Fig. 1. Cross-sectional view of a multilayered dielectric medium,

be performed without any prior knowledge of the junction geometry.

The following two subsections detail the derivation of the closed-

form Green’s functions due to a point charge, a line charge, and a

semi-infinite line charge with or without the top ground plane.

A. Closed-Form Green’s Functions for Geometries

Without the Top Ground Plane

When there is no top ground plane, the four coefficient functions

1{,+ in (1a) or (lb) are nonoscillatory and smooth functions of -y;

hence, each coefficient function can be accurately approximated with

real-valued exponential functions as follows [8]:

~=1

i=l,2,3,4 (2)

where N:, ~,, denotes the number of exponential functions used in

the approximation of 1<,*, which typically ranges from 5 to 10. The

exponential functions used in the spectral-domain approximation can

be physically interpreted as weighted images in the space domain

[8]. Compared to the exact Green’s function in the space domain,

which consists of an infinite number of images, the expression for

the closed-form Green’s function consists of only a finite number of

weighted images.

Once the exponential approximation is performed in the spectral

domain, the closed-form Green’s functions for 2-D and 3-D can

be obtained in the space domain by using the inverse Fourier

transformation formulas (14a) and (14b) in [8], and the resulting

expressions are given by

G2D(dPO)=– & &%d (3a)

,=1

G3D(. \.0) = && f:”’’(rl?.). (3b)
. ,=1

For i = 1 and y < YO, the expressions of f~D’* and f~D’* are given

by (4a) and (4b) as shown at the bottom of the page.

.,+
“m, n,l
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Similar expressions can be obtained for ~~D* and ~~D’+ for other

values of i.

To derive the Green’s function for a semi-infinite uniform line

charge, the auxiliary Green’s function for a line charge with polarity

reversal is employed [2]. Consider a uniform line charge, which starts

from z = & and is infinitely extended in the positive z-direction;

then the Green’s function for a semi-infinite line charge G’emi can

be expressed as

(5)

where G’emi ‘1s the Green’s function for a line charge with an abrupt

polarity reversed from minus to plus at z = ~. The expression for

G’ is obtained by integrating the potential due to a point charge [2]

Again, for i = 1 and y < YO,~~“k is given by

bottom of the page,

G3D(rlTo)

(6)

(7) as shown at the

B. Closed-Form Green’s Functions for Geometries

with the Top Ground Plane

When the top ground plane is present, all of the four coefficient

functions K* are still nonoscillatory but contain a pole at T = O; as

a consequence, 1{,* can no longer be accurately approximated with

exponential functions [8]. To overcome this difficulty, let us rewrite

G in the following mannec

G(y, ylro) = Rm,nG~(y, ylro) + d(~,ylro) (8)

where Gh is the spectral-domain Green’s function for a homogeneous

medium, i.e., all dielectric layers are replaced by the source layer.

R~,. k a constant which is determined such that @h contains a pole

at y = O and @ is a well-behaved function without any poles. R~,.
can be obtained either numerically or analytically by taking limits of

G and Gh as y ~ O. Now the technique used in the previous section

can be applied to obtain the closed-form expression for ~ in the

space domain, and the space-domain expressions of G are obtained

once the corresponding expressions of Gh are determined.

Expressions of Gh in the space domain can be easily obtained

using the image theory approach and are given by

G2D’h(PIPO)

1 ~ ,n(J:z- %)2 + (y – y. – 2kh)2
———

2X
k=–cc x – ZO)2 + (y + y. – 2klt)2 )

(9a)

Fig. 2.
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A

A

.
x

General geometry of a strip discontinuity.

G3D)h(TlT.)

=&ii
kc–cc

“(d 1

(z - ao)z + (y – y. - 2kh)’ + (z - %)’

1—
J(z - ZO)2 + (y +yo - 2kh)2 + (z - %)’ )

(9b)

and (9c) as shown at the bottom of the page.

Unfortunately, all expressions are written in terms of infinite series.

Although G2D ‘h can be alternatively expressed using a closed-form

formula [8], such closed-form formulas cannot be been found for
Gs~,h ~d Gp,k, Since the closed-form formula for G2D’h requires

numerical integration when the moment matrix is computed, we will

simply use (10a) to evaluate G2D 1h. Tl~erefore, an infinite-series

expression, in general, cannot be avoided for G2D, G3D, and Gp

when the top ground plane is present. However, the expressions for

G2D, G’D, and Gp given in this paper are still numerically more

efficient thao the ones obtained from the conventional image method

since a nested infinite series of the conventional method is reduced

to a simple infinite series without nestirlg as shown in the above

equations.1 For this reason we shall still refer to G’D, G3D, and Gp

given by (9), (lOa), (lOb), and (1OC) as closed-form Green’s functions.

1Alternatively, infinite series can be avoided by modeling the toP ground

plane as an additiottat conductor and using the Green’s functions in the
previous section.

~~nl

(;(x–z.)’ +(Y+Y. –2d~ +al~n,,)2+(z–6)2 +(z–t)

.ff’’+(TIT., &) = ~’ C~:~,l . in
j=l (z – %.)2 + (y+~o – 2d. +a::n,l)’ + (z – ~)’ – (z – &)

)

(7)

Gp’h(rlTO, <) = -& ~ in

“ ($

(%-xo)2+(y -yo-2kh)2+ (z-&) 2+(z-&)

!$=-CC (z-zo)2+(y -yo-2kh)’+ (z-<) ’-(2-&)

. /(3-zo)’ +(y+yo-2kh)’ +(z-&)’-(z-&)

)
J(z-zo)2+(y +yo-2kh)’+ (z-<) 2+(z-~) “

(9C)
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Fig. 3. Discontmuities and theu equivalent circuit representations. (a) An open end. (b) A step Junction. (c) A bend. (d) A T junction

III. FORMULATION OF AN INTEGRAL EQUATION

In this section, an integral equation is formulated in terms of the

excess charge distribution using the closed-form Green’s functions

derived in the previous section. Fig. 2 shows the planar view of

the general geometry of a discontinuity, which consists of traces

and a junction region. This general geometry represents most of the

common strip discontinuities, e.g., an open-end, a nonothogonal bend.

and various junctions. Although the present approach can handle

conductors with finite thicknesses, the conductor thicknesses are

assumed to be infinitely thin in this paper. The discontinuity structure

is embedded in a layered dielectric medium, which is slhownin Fig. 1.

The integral equation relating the electrostatic potential r) and the

charge density q on the surface of a conductor is given by

where Q are the surfaces of a conductor: traces and a junction region.

To simplify the notation the integration is symbolically written as

(., ). Now let us rewrite the charge density q in the following manner:

{

Y](r)> if r is on the junction region
q(r) = ~;(,r) (11)

if r is on the ith trace

Then, ( 10) becomes

A’*

(j(r) = (G3D, q) = (G3D,g,T)+~(G3D, q;). (12)
,=1

Du~rnposing the charge densities q; into the uniform charge density

qT ‘ and the excess charge density q~ces”’ for each trace

(j(r) = I G3D(rlr’)q(r’) dr’ = (G3D, q} (lo) q;(r) = qy’f’’(r’) + qpce’s’’(r). (13)

.r2
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TABLE I
TRE NUMERICAL RESULTS (UNITS N IN FEMTOFARAD)

787

Open End

Step Junction

Bend

T Junction

eo, Vo

Medium 1

Computation

17.33

1.120

6.210

1.385

Others

17.0 [1]

1.05 [1], 0.74 [7]

6.75 [1], 5.8 [7]

1.9 [7]

— Y1

— y=o mm

Bottom Ground Plane

(a)

— Y2

— Y1

— y=O mm

Bottom Ground PIane

(b)

Top Ground Pkme

— Y3

— Y2

— YI

— y=omm

Bottom Ground Plane

(c)

Fig. 4. Three media considered for numerical examples. (a) Medium 1. (b)
Medium 2. (c) Medium 3.

Here, the uniform charge density qT“’if” is obtained by solving a 2-D

problem, in which it is assumed that only the ith trace is present in

the medium and that the itb trace is infinitely long in both directions.

A detailed discussion for wi~~g 2-D problems is given in [8]. The

uniform charge density g~ ‘ exists only on the ith trace, which

is a semi-infinite line; hence, G’emi should be used to compute the

potential due to g~’f”. Using (13), (12) can be written as follows:

q(r) - ~(Gsemi, q:’’” ) = (G3D, q,) + ~(G3D, q~cessi) (14)
i=l i=l

Medium 2

Computation

23.52

1.352

7.006

-4.917

Medium 3

Computation

19.62

0.609

9.184

-0.818

The integral equation (14) can now be solved by using the method

of moments. The collocation method is used in this paper. The closed-

form formula for the integration involving G3D is given discussed

in [8], whereas the integration involving Gsemi can be analytically

integrated using the following formula:

12

J [;

in
CP+bz+lz+a 1dl

11 az+bz+lz–(z

[(

= 21bl tan–l —
all

lbl@+b’+i; )

– tan–l

(

all!

pl~b’ + 1; )1

Now once (15) is sc

can be obtained by

Ce =

red, the excess (equivalent) capacitance c=

]/
QJ + ~Q~cess’ ~.

i=l

(16)

where Q J is the total charge on the juncticm region, and Q~cess’ i is

the total excess charge on the ith trace. Throughout the formulation,

we have assumed that the junction region exists between traces. The

formulation for cases without the junction region, such as an open

end and step junctions, can be easily obtained simply by removing

terms corresponding to qJ.

IV. Nuknmcfi EXAMPLES

Excess capacitances for four common strip discontinuities, an open

end, a step junction, a bend, and a T junction, are computed. The

geometries of discontinuities with their corresponding equivalent

circuits are shown in Fig. 3. The following parameters are used: 1)

an open end: w = 0.5 mm, 2) a step junction: WI = 0.1 mm and

W2 = O.z mm, 3) a right-angle bend: WI = wz = 0.15 mm, and

4) a T junction: w I = wz = WS = 0.15 mm. Three different types
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of media are considered for each discontinuity with the following

parameters (see Fig. 4): 1) an open end: =1 = 4.2, cz = 2.5, UI = 1.0

mm, U2 = 1.5 mm, and UJ = 2.0 mm, 2) a step junction: SI =
6.0, sz = 4.2, Y1 = 0.1 mm, YZ = 0.2 mm, and us = 0.3 mm, 3)

a bend: ~1. = 2.5, EZ = 4.2. YI = 0.15 mm. yZ = 0.3 mm, and

Y3 = 0.5 mm, 4) a T junction: E1 = 2.5, sz = 4.2, yl = 0.15 mm,

YZ = 0.3 mm, and ys = 0.5 mm. All discontinuities are assumed

to be embedded at y = VI. To place 3-D unknowns for the excess

charge distribution. the length of each trace is truncated at 1 = 8W.

The total numbers of unknowns per each trace were 50 for a 2-D

problem and 160 for a 3-D problem, whereas 100 unknowns were

used for the junction region. The maximum number of exponential

used to approximate each coefficient function Ii”,+ was 5.

The computed results are shown in Table I with the comparison

data for a microstrip case [Fig. 4(a)]. A good agreement was found

overall as shown in the table. It is interesting to note that for

some cases the value of an excess capacitance turns out to be

negative. Although a physical capacitance must be positive. an excess

(equivalent) capacitance is hypothetical and can be negative.

V. CONCLUSION AND FUTURE WORK

An efficient method to compute excess capacitances of strip

discontinuities was discussed in this paper. Complete expressions

of closed-form Green’s functions for a point charge, a line charge,

and a sern-infinite line charge have been derived. Unlike other

approaches. only a single integral equation is employed in this

paper to handle various strip discontinuities instead of formulating

an integral equation for each discontinuity type.
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