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gallium arsenide substrate. However, a circuit using primarily duroid
(er = 2.2) as a substrate may use the first low-coupling height ratio
with a very thin upper substrate of high dielectric constant inserted
above a lower duroid substrate.

Consideration must also be made concerning whether such a mode
equalizing structure is physically realizable. Referring to Fig. 2(b),
the low-coupling height ratios shown exactly equalize the even- and
odd-modes at a given frequency which may not be physically realiz-
able in many circuit designs. However, choosing height combinations
as close as possible to these ideal low-coupling height ratios will tend
to minimize the overall effects of pulse distortion and coupling in
edge-coupled CPW’s. '

V. CONCLUSION

A full-wave analysis was used to calculate the effective dielectric
constants for even- and odd-modes of edge-coupled, CPW for-
ward directional couplers in multilayer substrate structures using
a conductor-backed ground plane. It was found that the phase
velocities of both even- and odd-modes can be equalized for specific
multilayer substrate height combinations over a wide range of slot
geometries, suggesting that a single multilayer substrate configuration
may be used to control pulse distortion and coupling for wide-
band signals. When the lower substrate dielectric constant is much
less than the upper substrate dielectric constant, it was found that
these low-coupling height combinations can lead to circuit designs
using combinations of thick and very thin substrates. Dispersion and
coupling of a 10ps Gaussian pulse were presented for uncompensated
and compensated configurations. It was shown that a multilayer
structure using substrate height combinations that equalize both even-
and odd-mode phase velocities can significantly reduce coupling and
distortion effects. Design guidelines applicable toward practical MIC
and MMIC structures were also presented.
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Computation of Excess Capacitances of Various Strip
Discontinuities Using Closed-Form Green’s Functions

Kyung S. Oh, Jose E. Schutt-Aine, and Raj Mittra

Abstract— An efficient quasi-static method to compute excess (equiv-
alent) capacitances of various strip discontinuities in a multilayered
dielectric medium is presented. The excess charge distribution on the
surface of a conductor is obtained by solving an integral equation
in conjunction with closed-form Green’s functions. A complete list of
expressions of the closed-form Green’s functions for a point charge, a
line charge, and a semi-infinite line charge is presented. An open end,
a bend, a step junction, and aT junction are considered as numerical
examples.

1. INTRODUCTION

Quasi-static analysis is often performed to characterize strip dis-
continuities when the dimensions of the discontinuities are much
smaller than the wavelength. Under the quasi-static analysis, the
dominant effect of strip discontinuities is fringing fields due to the
physical irregularities of discontinuity geometries. The modeling of
these fringing fields in terms of an excess capacitance is discussed
in this paper.

Numerous papers have been published to compute excess capaci-
tances of various microstrip discontinuities, and a summary of popular
methods can be found in [1]. The most successful approach is one
based on the formulation of an integral equation in terms of the
excess charge distribution, which was first proposed by Silvester
and Benedek [2] and has been applied to analyze various microstrip
discontinuities [2]-[5]. The Green’s function for a layered medium
is employed in this approach. For N dieleciric layers, the expression
for this Green’s function would consist of an N — 1 nested infinite
series [6]; hence, in practice, this form of the Green’s function may
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not be applied to a multilayered medium. Recently, Sarkar et al. [7]
solved discontinuity problems for a multilayered medium using the
free-space Green’s function, but additional unknown charges (over
unknown charges on the surface of a conductor) had to be placed
on the dielectric interfaces and the top ground plane to model the
polarization charge and the free charge. Although such inclusion of
unknowns may be tolerable for two-dimensional (2-D) problems,
it is computationally too burdensome for three-dimensional (3-D)
problems.

In this paper, the closed-form Green’s function discussed in [8]
is employed to formulate an integral equation in terms of the excess
charge distribution. A complete list of expressions of the closed-form
Green’s functions for a point charge, a line charge, and a semi-infinite
line charge with or without a top ground plane is presented in this
paper. The presented method requires neither additional unknowns to
model dielectric interfaces and the top ground plane nor evaluations
of any infinite series except for cases where the top ground plane is
present. When the top ground plane is present, using the closed-form
Green’s function is still numerically advantageous since the nested
infinite series in the expression of the usual Green’s function becomes
a simple infinite series without nesting.

II. CLOSED-FORM GREEN’S FUNCTIONS

Closed-form expressions of the electrostatic Green’s functions for
a point charge, a line charge, and a semi-infinite line charge are
derived in this section based on the approach used in [8]. Consider
N dielectric layers which are backed by a ground plane as depicted
in Fig. 1. The Nth layer is either a half-space or terminated by an
optional top ground plane. All dielectric layers and ground planes are
assumed to be planar and infinite in the zz-plane. The electrostatic
Green’s function in the spectral domain is described by the following
closed-form formula [8]:
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where G is the spectral-domain Green’s function, and r and r, are
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Fig. 1. Cross-sectional view of a multilayered dielectric medium.

be performed without any prior knowledge of the junction geometry.
The following two subsections detail the derivation of the closed-
form Green’s functions due to a point charge, a line charge, and a
semi-infinite line charge with or without the top ground plane.

A. Closed-Form Green’s Functions for Geometries
Without the Top Ground Plane

When there is no top ground plane, the four coefficient functions
Kz-i in (la) or (1b) are nonoscillatory and smooth functions of +;
hence, each coefficient function can be accurately approximated with
real-valued exponential functions as follows [8]:

NE
™", . L.
= =+, Sy
Ixi (m,n,y) = Z Cm’i‘ieam»”v"y’
=1
i=1,2,3,4 )

where N,ﬁnyi denotes the number of exponential functions used in
the approximation of K ii, which typically ranges from 5 to 10. The
exponential functions used in the spectral-domain approximation can
be physically interpreted as weighted images in the space domain
[8]. Compared to the exact Green’s function in the space domain,
which consists of an infinite number of images, the expression for
the closed-form Green’s function consists of only a finite number of
weighted images.

Once the exponential approximation is performed in the spectral
domain, the closed-form Green’s functions for 2-D and 3-D can
be obtained in the space domain by using the inverse Fourier
transformation formulas (14a) and (14b) in [8], and the resulting
expressions are given by
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Similar expressions can be obtained for f2°% and f7°* for other
values of «¢.

To derive the Green’s function for a semi-infinite uniform line
charge, the auxiliary Green’s function for a line charge with polarity
reversal is employed [2]. Consider a uniform line charge, which starts
from z = ¢ and is infinitely extended in the positive z-direction;
then the Green’s function for a semi-infinite line charge G*™ can
be expressed as

G (rlro. &) = §IG* (loo) + G7 (e8] )

where G°°™! is the Green’s function for a line charge with an abrupt
polarity reversed from minus to plus at z = §. The expression for
G? is obtained by integrating the potential due to a point charge [2]

G?(r|ro, &) = — /£
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Again, fori =1 and y < 9o, f7 *+ s given by (7) as shown at the
bottom of the page. :

B. Closed-Form Green’s Functions for Geometries
" with the Top Ground Plane

When the top ground plane is present, all of the four coefficient
functions K ;—L are still nonoscillatory but contain a pole at v = 0; as
a consequence, K f: can no longer be accurately approximated with
exponential functions [8]. To overcome this difficulty, let us rewrite
G in the following manner:

G(v,ylro) = R nG" (7, 9lr0) + G (7, ylro) ®)

where G" is the spectral-domain Green’s function for a homogeneous
medium, i.e., all dielectric layers are replaced by the source layer.
Ry, is a constant which is determined such that G" contains a pole
aty = 0 and G' is a well-behaved function without any poles. R »
can be obtained either numerically or analytically by taking limits of
G and G" as v — 0. Now the technique used in the previous section
can be applied to obtain the closed-form expression for G in the
space domain, and the space-domain expressions of G are obtained
once the corresponding expressions of G" are determined. -

. Expressions of G" in the space domain can be easily obtained
using the image theory approach and are given by

G*P(plpo)
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Fig. 2. General geometry of a strip discontinuity.
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and (9¢c) as shown at the bottom of the page.

Unfortunately, all expressions are written in terms of infinite series.
Although G*P"* can be alternatively expressed using a closed-form
formula [8], such closed-form formulas cannot be been found for
G*PF and GP". Since the closed-form formula for G requires
numerical integration when the moment matrix is computed, we will
simply use (10a) to evaluate G2P+", Therefore, an infinite-series
expression, in general, cannot be avoided for GZD,G3D, and G?
when the top ground plane is present. However, the expressions for
G*,GP, and G? given in this paper are still numerically more
efficient than the ones obtained from the conventional image method
since a nested infinite series of the conventional method is reduced
to a simple infinite series without nesting as shown in the above
equations.! For this reason we shall still refer to G? PP, and G*
given by (9), (10a), (10b), and (10c) as closed-form Green’s functions.

1 Alternatively, infinite series can be avoided by modeling the top ground

plane as an additional conductor and using the Green’s functions in the
previous section.
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II1. FORMULATION OF AN INTEGRAL EQUATION

In this section, an integral equation is formulated in terms of the
excess charge distribution using the closed-form Green's functions
derived in the previous section. Fig. 2 shows the planar view of
the general geometry of a discontinuity, which consists of traces
and a junction region. This general geometry represents most of the
common strip discontinuities, e.g., an open-end, a nonothogonal bend.,
and various junctions. Although the present approach can handle
conductors with finite thicknesses, the conductor thicknesses are
assumed to be infinitely thin in this paper. The discontinuity structure
is embedded in a layered dielectric medium, which is shown in Fig. 1.

The integral equation relating the electrostatic potential ¢ and the
charge density ¢ on the surface of a conductor is given by

mm=/@%WMMM:wW@ (10)
JQ

Discontinuities and therr equivalent circuit representations. (a) An open end. (b) A step junction. (¢) A bend. (d) A T junction

where €2 are the surfaces of a conductor: traces and a junction region.
To simplify the notation the integration is symbolically written as
{+,+). Now let us rewrite the charge density ¢ in the following manner:

_ {qi(r), if r is on the junction region
a(r) = {qlT('r), if r is on the ith trace an
Then, (10) becomes
Ny
6(r) = (G*.q) = (G°P, a1y + D (G*P,ar).  (12)

=1

Decomposing the charge densities g7 into the uniform charge density

: ; 3
5t and the excess charge density ¢7 ' for each trace

G (1) = g0 ) + g ). (13
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TABLE I
THE NUMERICAL RESULTS (UNITS ARE IN FEMTOFARAD)
Medium 1 Medium 2 Medium 3
Computation Others Computation Computation

Open End 17.33 17.0 [1] 23.52 19.62

Step Junction 1.120 1.05 {11, 0.74 [7] 1.352 0.609

Bend 6.210 6.75 [1], 5.8 [7] 7.006 9.184

T Junction 1.385 1.9 [7] -4.917 -0.818
€0 o k The integral equation (14) can now be solved by using the method

Bottom Ground Plane
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Fig. 4. Three media considered for numerical examples. (a) Medium 1. (b)
Medium 2. (¢) Medium 3.

unif s

Here, the uniform charge density ¢ is obtained by solving a 2-D
problem, in which it is assumed that only the ¢th trace is present in
the medium and that the ith trace is infinitely long in both directions.
A detailed discussion for solving 2-D problems is given in [8]. The
~ uniform charge density g2 exists only on the ith trace, which
is a semi-infinite line; hence, G=*™ should be used to compute the
potential due to g“mf i Using (13), (12) can be written as follows:

¢(T) _ Z(Gseml unif, z) — (GBD,QJ> _I_Z(GSD,q;xcess z> (14)

=1

of moments. The collocation method is used in this paper. The closed-
form formula for the integration involving G® is given discussed
in [8], whereas the integration involving G**™ can be analytically
integrated using the following formula:
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(15)

Now once (15) is solved, the excess (equivalent) capacitance c®
can be obtained by

(16)

o Far=

excess,i

where @ is the total charge on the junction region, and Q7 is
the total excess charge on the ith trace. Throughout the formulation,
we have assumed that the junction region exists between traces. The
formulation for cases without the junction region, such as an open
end and step junctions, can be easily obtamed simply by removing
terms corresponding to ¢7.

IV. NUMERICAL EXAMPLES

Excess capacitances for four common strip discontinuities, an open
end, a step junction, a bend, and a T junction, are computed. The
geometries of discontinuities with their corresponding equivalent
circuits are shown in Fig. 3. The following parameters are used: 1)
an open end: w = 0.5 mm, 2) a step junction: w; = 0.1 mm and
wg = 0.2 mm, 3) a right-angle bend: wy = we = 0.15 mm, and
4) a T junction: w1 = w2 = ws = 0.15 ram. Three different types
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of media are considered for each discontinuity with the following
parameters (see Fig. 4): 1) an openend: £1 = 42,62 = 2.5,y1 = 1.0
mm, y2 = 1.5 mm, and y3 = 2.0 mm, 2) a step junction: £, =
6.0,c2 = 42,93 = 0.1 mm, y2 = 0.2 mm, and y3 = 0.3 mm, 3)
a bend: g1.= 25,60 = 42.y1 = 0.15 mm. y2 = 0.3 mm, and
ys = 0.5 mm, 4) a T junction: €1 = 2.5, ¢, = 4.2,y; = 0.15 mm,
y2 = 0.3 mm, and y3 = 0.5 mm. All discontinuities are assumed
to be embedded at y = y;. To place 3-D unknowns for the excess
charge distribution. the length of each trace is truncated at [ = 8w.
The total numbers of unknowns per each trace were 50 for a 2-D
problem and 160 for a 3-D problem, whereas 100 unknowns were
used for the junction region. The maximum number of exponentials
used to approximate each coefficient function I{li was 5.

The computed results are shown in Table I with the comparison
data for a microstrip case [Fig. 4(a)]. A good agreement was found
overall as shown in the table. It is interesting to note that for
some cases the value of an excess capacitance turns out to be
negative. Although a physical capacitance must be positive. an excess
(equivalent) capacitance is hypothetical and can be negative.

V. CONCLUSION AND FUTURE WORK

An efficient method to compute excess capacitances of strip
discontinuities was discussed in this paper. Complete expressions
of closed-form Green's functions for a point charge, a line charge,
and a semi-infinite line charge have been derived. Unlike other
approaches, only a single integral equation is employed in this

paper to handle various strip discontinuities instead of formulating
an integral equation for each discontinuity type.
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